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Abstract. We investigate experimentally the properties of spatio-temporal intermittency states (turbulent
bursts and spiral turbulence) in the counter-rotating Couette-Taylor system. The mean turbulent fraction
increases continuously from turbulent bursts to spiral turbulence and depends on the angular velocity of
both cylinders. The axial velocity of turbulent spirals, which depends only on the outer cylinder, is smaller
than the azimuthal component.

PACS. 47.20.Ky Nonlinearity (including bifurcation theory) – 47.27.Cn Transition to turbulence

1 Introduction

Spatio-temporal intermittency (STI) represents an in-
triguing feature of the transition to turbulence: it is a
fluctuating mixture of ordered laminar domains and in-
coherent turbulent patches in space and time for the
same value of the control parameter. This phenomenon
involves spatial as well as temporal degrees of freedom of
the system. This transition has been observed in shear
flows such as boundary layer flow [1], pipe flow [2], plane
Poiseuille flow [3,4], the counter-rotating Couette-Taylor
system [5–7] and the Taylor-Dean system [8]. It has also
been observed in Rayleigh-Bénard convection for large
values of temperature gradients [9,10] and in array of
2d vortices forced electromagnetically [11]. The coexis-
tence of two different dynamical states, of particular in-
terest in hydrodynamic systems, has also been evidenced
in numerical simulations of coupled map lattices [12],
in nonlinear partial differential equations such as the
damped Kuramoto-Sivashinsky equation [13] or the com-
plex Ginzburg-Landau equation [14–16] and in probabilis-
tic cellular automata [17]. The coexistence of two different
stable states for the same values of the control parameter,
can be seen as consequence of a subcritical bifurcation and
is described by a fifth order Landau equation [18].

The spatio-temporal intermittency observed in the
Couette-Taylor system reveals special features: turbulent
bursts occur erratically in time and space in the lami-
nar phase of interpenetrating spiral, while a turbulent
spiral coexists with a spiral of laminar base flow [5,
6] in a wide range of values of the control parameter.
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The transition to turbulent bursts from interpenetrat-
ing spiral pattern has been investigated numerically by
Coughlin and Marcus [19] and experimentally by Colovas
and Andereck [20] who have measured their turbulent frac-
tion and the statistical properties of laminar domains as
function of the control parameter. The latter noticed the
lack of a regime of exponential decay of laminar length
which would correspond to the supercritical transition
analogous to the contamination phase of the directed per-
colation according to Pomeau’s conjecture [18]. In fact,
above a given value of the control parameter, the turbu-
lent bursts merge to form a turbulent spiral. The result-
ing flow state called spiral turbulence is characterized by
coexistence of stable turbulent and laminar spirals for fi-
nite range of the control parameter. Hegseth et al. [21]
have investigated experimentally the kinematics of a tur-
bulent spiral and explained some of its properties (pitch
and azimuthal velocity) using a phase dynamics equation.
Later on, Hayot and Pomeau [22] explained the stable co-
existence of turbulent spiral together with a laminar one,
using a quintic Ginzburg-Landau equation, in which they
included a nonlocal term that serves to prevent the tur-
bulent domain expansion.

In this paper, we report new experimental results of
the transition from interpenetrating spirals to turbulent
bursts and focus our attention on the properties of a tur-
bulent spiral that, to the best of our knowledge, have not
been reported before. We have measured the turbulent
fraction of both regimes, the average duration of turbu-
lent bursts, the period, the axial velocity and the width of
turbulent spirals. In next section, we describe the exper-
imental setup and procedures, the results are presented
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Fig. 1. Diagram of states observed in counter-rotating
Couette-Taylor system for Ro = −1375. The terminology is
borrowed from Andereck et al. [5].

in Section 3 and their discussion in Section 4. The last
section contains concluding remarks.

2 Experimental setup and procedures

The Couette-Taylor configuration used in our experiments
consists of two coaxial horizontal counter-rotating cylin-
ders. The inner cylinder is made of black Delrin with a
radius a = 4.459 cm . The outer cylinder is made of trans-
parent Plexiglas with a radius b = 5.050 cm . The gap
between the cylinders is d = b − a = 0.591 cm over a
length L = 27.5 cm. Hence the system has a radius ra-
tio η = a/b = 0.88, and an aspect ratio Γ = L/d = 46.
Both cylinders are driven independently in opposite di-
rection by two DC servomotor. Thus the control parame-
ters of the Couette-Taylor system are the Reynolds num-
bers defined for the inner and outer cylinders respectively:
Ri = Ωiad/ν and Ro = Ωobd/ν, where Ωi and Ωo are an-
gular frequencies of inner and outer cylinder respectively
and ν the kinematic viscosity of the fluid. We used dis-
tilled water (ν = 10−2 cm2/s at T = 21 ◦C) to which we
added 2% Kalliroscope AQ1000 for visualization. With a
light from a fluorescent tube, the flow was visualized on
the front side. To obtain spatial information about the
flow dynamics, a linear 1024-pixel charge coupled device
(CCD) array records the intensity distribution I(x) of the
light reflected by Kalliroscope flakes from a line along the
axis at the middle of cylinders. The recorded length is
from 20 to 25 cm in the central part of the system, cor-
responding to a spatial resolution of 41 to 51 pixels/cm.
The intensity is sampled in 256 values, displayed in grey
levels at regular time intervals along time axis to produce
space-time diagrams I(x, t) of the pattern.

3 Results

We characterize the weak turbulent states observed in
the counter-rotating Couette-Taylor system for fixed outer
cylinder rotation (Ro =const.) and varying Ri in the state
diagram of Andereck et al. [5] (Fig. 1). A centrifugal insta-
bility of the base flow induces a supercritical Hopf bifurca-
tion that gives rise to interpenetrating spirals above Ri+
which varies with Ro (Fig. 1: for Ro = −1375, Ri+ = 520).
Interpenetrating spirals can be seen as waves propagating
in opposite directions and which interfere (Fig. 2) in space.
The interpenetrating spirals are stable in a small range
of values of Ri and above Ri∗, they pertain a secondary
subcritical instability (i.e. they become unstable to finite
amplitude perturbations) which manifests itself in form of

turbulent bursts occurring irregularly in time at different
positions of the flow (Fig. 3). The occurrence of a turbu-
lent burst induces a dissymmetry in the pattern, the in-
tensity of interpenetrating spirals decreases in the wake of
a turbulent burst. The average number per unit time, the
lifetime and size of the turbulent bursts increase with Ri.
As the inner cylinder rotation rate increases, the turbu-
lent bursts acquire an axial velocity component, smaller
than the azimuthal velocity component, and hence they
are inclined with respect to the cylinder axis (Fig. 4).
When the length of the burst becomes comparable with
the half perimeter of the cylinder, bursts connect to form
a turbulent spiral. The pattern is then composed of two
alternating turbulent and laminar spirals (Fig. 5). The
turbulent spiral coexists with the laminar spiral for a long
time without annihilating each other in a wide range of
the values of the control parameter (Fig. 1). In that range
of values of Ri, the axial width of the turbulent spiral
remains constant. Moreover, the turbulent spiral has no
preferred direction of propagation, it may have right or
left helicity. In fact, we have determined the probability
of occurrence of left or right helicity over 120 runs and
found 50%± 4% for each case. For some runs (especially
with a rapid increase in Ri), we have observed transient
turbulent spirals of both left and right helicity separated
by a defect which disappeared after a few minutes giving
rise to a turbulent spiral of a given helicity. For very large
values of Ri (Ri > 725 for Ro = −1375), the turbulent
spiral spreads while the laminar spiral decays and the flow
becomes completely turbulent (featureless turbulence).

In order to quantitatively characterize the observed
states, we have measured, from the space-time diagrams,
the lifetime, the axial length and the frequency (number
per unit time) of turbulent states. We have binarized the
space-time diagrams as follows: after a choice of a cutoff
criterion, the laminar phase is set to 0 (white) and the
turbulent state to 1 (black). Then we have determined
the mean turbulent fraction as the total area of turbulent
region to the total measured area of the space-time dia-
gram. The mean turbulent fraction is zero in the laminar
state and reaches its maximum value (1) in the completely
turbulent state. For weak values of ε (ε < 0.05), the tur-
bulent fraction for bursts is an increasing function of Ri
and its slope depends on the value of Ro (Fig. 6). With an
increase of Ri, the turbulent bursts occur more frequently
and grow in size until they connect each other to form
a turbulent spiral (0.05 < ε < 0.2). The fraction of the
turbulent spiral is a linear function of Ri (the part of the
curve in Fig. 6 for ε > 0.2) and varies with Ro. The varia-
tion of the turbulent fraction of turbulent spiral with Ro
has been determined for runs at fixed Ri = 610, Ri = 670
(Fig. 7); the difference between the two curves is due to
the fact that the range of the values of Ro for which turbu-
lent spirals are observed for Ri = 670 is larger than that
for Ri = 610. The lifetime of turbulent bursts and tur-
bulent spiral increases with ε. The frequency of turbulent
spirals does not depend on ε. We have measured the aver-
age axial width l of the turbulent spiral and found that it
is constant with respect to Ri (Fig. 8). The axial velocity
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(a)

(b)

Fig. 2. (a) Picture and (b) spatio-temporal diagram of inter-
penetrating spiral near the onset Ri+ = 520 for Ro = −1375.
The corresponding wavenumber is q = 1.44 cm−1 and the fre-
quency is f = 0.707 Hz.

(a)

(b)

Fig. 3. (a) Picture and (b) spatio-temporal diagram of
spontaneous nucleation of turbulent bursts for Ro = −1375,
Ri = 544.

(a)

(b)

Fig. 4. (a) Picture and (b) spatio-temporal diagram of con-
necting turbulent bursts for Ro = −1375, Ri = 580.

(a)

(b)

Fig. 5. (a) Picture and (b) spatio-temporal diagram of tur-
bulent spiral for Ro = −1375, Ri = 611.
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Fig. 6. Turbulent fraction of turbulent bursts and turbulent
spirals vs. ε = Ri−Ri∗

Ri∗ ·

Fig. 7. Turbulent fraction of turbulent spirals as a function of

ε
′

= Ro−Roc
Roc

, where Roc is the critical value for which bursts
occur for fixed value of Ri.

Fig. 8. Ratio γ of the average axial l width of turbulent spiral
l to the total working length L of the flow system as function
of ε for Ro = −1260 and Ro = −1350.

Fig. 9. Axial velocity of turbulent spirals in units of diffusion

velocity Ωob as a function of ε
′
.

of turbulent spiral was obtained as the ratio of the axial
length to the time duration of turbulent spiral, it increases
with ε′(Fig. 9) for fixed value of Ri. We measured the in-
clination angle of turbulent spiral also called pitch angle
and found that it varies from 21◦ to 40◦. Using geomet-
rical consideration, we have deduced from these values,
an approximate value of the azimuthal velocity which was
found to be at least 1.5 times larger than the axial velocity.

4 Discussion

The bursting phenomenon is governed by the space distri-
bution of energy transferred from rotating cylinders to the
interpenetrating spirals. In fact, we observed the disap-
pearance of interpenetrating spirals in the wake of turbu-
lent bursts as a consequence of the strong energy dissipa-
tion by the bursts. A similar behaviour has been observed
in the Emmons turbulent spots occurring in boundary-
layers over plane plates [1,23]. The generation of a new
burst occurs not in the wake of previous one but either
at the left or the right of this wake where less energy is
dissipated. The turbulent fraction dependence on Ri for
fixed Ro follows the same behaviour as that of Colovas
and Andereck [20] for turbulent bursts. The strong de-
pendence of turbulent fraction on Ri means that the in-
ner cylinder is more responsible than the outer cylinder
for the energy transfer to the fluctuations that dissipate
in the turbulent regime. This is due to the centrifugal in-
stability very active near the inner cylinder, so the growth
rate of the finite amplitude perturbations generating the
bursts is stratified in the radial direction. The turbulent
fraction is correlated with the lifetime and size of turbulent
domains in the space-time diagrams. In fact, the number,
mean lifetime and size of turbulent bursts increase with
the control parameter Ri, that is why the turbulent frac-
tion f increases with Ri. The statistics of the laminar
domains versus their width have been reported in [20].
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No statistics on width of turbulent spiral can be achieved
since the turbulent spiral has approximately constant ax-
ial width (Fig. 8).

The axial velocity of turbulent spiral is smaller than
the azimuthal velocity, it is a linear function ofRo and it is
independent of Ri in agreement with previous results [5].
This behaviour may be explained if one considers that the
turbulent and laminar spirals form a spatio-temporal pat-
tern with a selected wavelength (depending on the system
aspect ratio) and drifting at the same velocity. The pe-
riod of the turbulent spiral increases with Ri while that of
laminar spiral decreases keeping constant the mean pe-
riod of the turbulent-laminar pattern. This is why the
fraction of turbulent spirals increases with Ri but their
axial velocity remains constant. For fixed Ri, the period
of turbulent-laminar spirals increases and since the aver-
age size is constant, the axial velocity of spirals increases
with Ro. The behaviour of turbulent spiral is very sensi-
tive to the boundary conditions imposed to the flow [24]
and to the aspect ratio of the system [25].

According to numerical results of Coughlin et al. [19],
the interpenetrating spirals are destabilized by an az-
imuthal traveling wave (induced by a secondary instabil-
ity). A nonlinear stability analysis of the interpenetrating
spirals [26] shows that azimuthal and axial mean field ve-
locities possess inflexion points and according to Rayleigh
criterium for parallel flows, are unstable to transverse
time-dependent perturbations. The inflexion point is lo-
cated in the inner region whose extent depends on the
inner rotation speed. This may explain the dependence of
turbulent fraction upon Ri.

The occurrence of turbulent bursts in the laminar pat-
tern of interpenetrating spirals is a subcritical bifurcation,
therefore it can be described by the fifth order Landau
equation which is known to exhibit, two coexisting states
in a given range of values of the control parameter [18,22].
For small values of the control parameter, the turbulent
state is metastable and decays after a short time into the
absorbing laminar phase, while for large values, the lami-
nar state becomes metastable and decays into a turbulent
state. This is the scenario of spatio-temporal intermit-
tency observed in extended systems such as Taylor-Dean
system [8] and Rayleigh-Bénard convection [9,10]. In the
counter-rotating Couette-Taylor system, as the control
parameter is increased, the growth of turbulent bursts
leads to a pattern in which there is a stable coexistence of
turbulent and laminar spirals in a finite range of values of
Ri. No invasion of turbulent state into laminar phase nor
a decay of turbulent state is observed. The average axial
width of turbulent spirals and that of laminar domains
remain constant as Ri is increased. Moreover, histograms
of the size of laminar domains have shown only the so
called algebraic regime, no exponential decay of the size
of laminar domains has been observed in that case [20].
In order to explain this coexistence of two stable state in
time and for a finite range of Ri, Hayot and Pomeau [22]
conjectured the existence of a mean flow induced by
the turbulent fluctuations and added to the Ginzburg-
Landau equation for the amplitude A a nonlocal term I ∼

1
L

∫ L
0
|A|2dx which represents the mean energy of the per-

turbation in the system [22]. The resulting equation reads:

∂A
∂t = µA+D ∂2A

∂x2 + β(|A|2 − I)A− δ|A|4A

where µ is the relative distance from the onset of the fea-
tureless turbulence,D is a diffusion coefficient, the Landau
non linear constants β > 0 and δ > 0. Numerical simula-
tions of this equation [22] have shown that the expansion
of turbulent domains saturates in time and in size leading
to a stable turbulent spiral coexisting with a laminar one.
Therefore the constant average width of the turbulent spi-
ral with respect to Ri measured in our experiment (Fig. 8)
is consistent with this numerical result. A similar model
using a pressure gradient was developed by Stassinopoulos
et al. [27] in order to describe periodic states of intermit-
tency observed in pipe flows.

5 Conclusion

We have measured the turbulent fraction for turbulent
states (bursts and spirals) in the Couette-Taylor system
and found that it increases with angular velocities of both
the cylinders. The axial velocity of turbulent spirals is a
linear function of the outer cylinder rotation velocity. The
wavelength of turbulent-laminar spirals does not depend
upon the inner cylinder angular velocity but on that of the
outer cylinder. Therefore, the two counter-rotating cylin-
ders play a non symmetric role in the generation of inter-
mittency states (turbulent bursts and turbulent spirals).

The author would like to thank Arnaud Mura, Patrice Laure
and Olivier Dauchot for interesting discussions during the
work. A. Goharzadeh benefits from a MENRT scholarship.
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